78 research outputs found

    Genome-Wide Analysis of Müller Glial Differentiation Reveals a Requirement for Notch Signaling in Postmitotic Cells to Maintain the Glial Fate

    Get PDF
    Previous studies have shown that Müller glia are closely related to retinal progenitors; these two cell types express many of the same genes and after damage to the retina, Müller glia can serve as a source for new neurons, particularly in non-mammalian vertebrates. We investigated the period of postnatal retinal development when progenitors are differentiating into Müller glia to better understand this transition. FACS purified retinal progenitors and Müller glia from various ages of Hes5-GFP mice were analyzed by Affymetrix cDNA microarrays. We found that genes known to be enriched/expressed by Müller glia steadily increase over the first three postnatal weeks, while genes associated with the mitotic cell cycle are rapidly downregulated from P0 to P7. Interestingly, progenitor genes not directly associated with the mitotic cell cycle, like the proneural genes Ascl1 and Neurog2, decline more slowly over the first 10–14 days of postnatal development, and there is a peak in Notch signaling several days after the presumptive Müller glia have been generated. To confirm that Notch signaling continues in the postmitotic Müller glia, we performed in situ hybridization, immunolocalization for the active form of Notch, and immunofluorescence for BrdU. Using genetic and pharmacological approaches, we found that sustained Notch signaling in the postmitotic Müller glia is necessary for their maturation and the stabilization of the glial identity for almost a week after the cells have exited the mitotic cell cycle

    Estimating Impact Forces of Tail Club Strikes by Ankylosaurid Dinosaurs

    Get PDF
    BACKGROUND: It has been assumed that the unusual tail club of ankylosaurid dinosaurs was used actively as a weapon, but the biological feasibility of this behaviour has not been examined in detail. Ankylosaurid tail clubs are composed of interlocking vertebrae, which form the handle, and large terminal osteoderms, which form the knob. METHODOLOGY/PRINCIPAL FINDINGS: Computed tomographic (CT) scans of several ankylosaurid tail clubs referred to Dyoplosaurus and Euoplocephalus, combined with measurements of free caudal vertebrae, provide information used to estimate the impact force of tail clubs of various sizes. Ankylosaurid tails are modeled as a series of segments for which mass, muscle cross-sectional area, torque, and angular acceleration are calculated. Free caudal vertebrae segments had limited vertical flexibility, but the tail could have swung through approximately 100 degrees laterally. Muscle scars on the pelvis record the presence of a large M. longissimus caudae, and ossified tendons alongside the handle represent M. spinalis. CT scans showed that knob osteoderms were predominantly cancellous, which would have lowered the rotational inertia of the tail club and made it easier to wield as a weapon. CONCLUSIONS/SIGNIFICANCE: Large knobs could generate sufficient force to break bone during impacts, but average and small knobs could not. Tail swinging behaviour is feasible in ankylosaurids, but it remains unknown whether the tail was used for interspecific defense, intraspecific combat, or both

    Mechanical Impedance and Its Relations to Motor Control, Limb Dynamics, and Motion Biomechanics

    Get PDF

    Assessment of muscle mass and strength in mice

    No full text

    Limit of fish swimming speed

    No full text

    Entstehung von Impulsen in Sinnesorganen

    No full text

    Limit of fish swimming speed

    No full text
    • …
    corecore